

National Aeronautics and
Space Administration

NASA Technical Memorandum 104258

A Rule-Based System for Real-Time
Analysis of Control Systems

Richard R. Larson and D. Edward Millard

October 1992

National Aeronautics and
Space Administration

Dryden Flight Research Facility

Edwards, California 93523-0273

1992

NASA Technical Memorandum 104258

A Rule-Based System for Real-Time
Analysis of Control Systems

Richard R. Larson
NASA Dryden Flight Research Facility
Edwards, California

D. Edward Millard
Computer Sciences Corporation
Edwards, California

A RULE-BASED SYSTEM FOR REAL-TIME ANALYSIS OF
CONTROL SYSTEMS

Richard R. Larson
NASA Dryden Flight Research Facility

Edwards, California 93523-0273

D. Edward Millard
Computer Science Corporation

Edwards, California 93523-0273
Abstract

An approach to automate the real-time analysis of
flight critical health monitoring and system status is be-
ing developed and evaluated at the National Aeronautics
and Space Administration Dryden Flight Research Facil-
ity. A software package was developed in house and in-
stalled as part of the extended aircraft interrogation and
display system. This design features a knowledge-base
structure in the form of rules to formulate interpretation
and decision logic of real-time data. This technique has
been applied for ground verification and validation test-
ing and flight test monitoring where quick, real-time,
safety-of-flight decisions can be very critical. In many
cases postprocessing and manual analysis of flight sys-
tem data are not required. This paper describes the pro-
cessing of real-time data for analysis and the output
format, which features a message stack display. The de-
velopment, construction, and testing of the rule-driven
knowledge base, along with an application using the
X-31A flight test program, are presented.

Nomenclature

AOA angle of attack, deg

BIT built-in test

EHSV electrohydraulic servo valve

EU engineering unit

FCC flight control computer

FCS flight control system

I/O input/output

ISV isolation solenoid valve

LTEFO left trailing edge flap outboard

LVDT linear variable displacement transducer

MCC mission control center

NZ normal acceleration
OFP operational flight program

RM redundancy management

TM telemetry

XAIDS extended aircraft interrogation and display
system

Introduction

Today’s flight control systems are becoming increas-
ingly complex. The ground testing and flight support in
the mission control center (MCC) of these systems con-
tinues to be more time consuming and costly. Two prob-
lem areas are (1) the collection and processing of data
and (2) the limited availability of expertise to analyze
the information. A direct, raw data conversion in real
time into an analyzed result would reduce the human-
error element in interpreting the data while also mini-
mizing the amount of postprocessed data. For flight test
programs the benefits would result in reduced costs by
increasing the sortie rate by minimizing the time to de-
tect and analyze problems. An earlier completion of the
test objectives is possible while improving the safety-of-
flight monitoring and reducing support personnel. This
was a similar goal to support space shuttle flights in the
MCC as described in reference 1.

In the MCC traditional real-time displays provide only
limited information because of the screen size and num-
ber of terminals (fig. 1). Expert knowledge of the system
also is required to interpret and analyze the information.
An alternative approach would allow a large amount of
data to be processed by using a knowledge base which is
constructed of rules to formulate conclusions and deci-
sion logic. This technique would automatically decide
for the user what data to present on a single message dis-
play. The term “rule” as defined in this paper is a Bool-
ean expression which may contain any relational or
logical operators supported by the C programming lan-
guage. This concept provides the user the ability to
quickly and accurately monitor system parameters such

as health, status, configuration, and pilot advisory infor-
mation. The evolution of this utility is consistent with
the findings of the case study reported in reference 2.

The software application that could satisfy this need is
a tool such as the extended aircraft interrogation and dis-
play system (XAIDS) described in reference 3. The pro-
totype XAIDS was developed in house and demon-
strated using the F-18 High Alpha Research Vehicle
(HARV) iron bird simulation at NASA Dryden. An
improved version of this package was reprogrammed in
C language and installed on a UNIX® operating system
for continued use by the HARV program. This package
was evaluated in the control room for the X-31A, which
is described briefly in reference 4.

The XAIDS package is generic; it can be applied to
any specific system and is easily portable to any UNIX-
based operating system. The conversion from the
F-18 HARV to the X-31A program was easily done. The
primary differences are the database and the specific
knowledge-base logic. This paper describes the develop-
ment, knowledge-base architecture, testing, and experi-
ence using the XAIDS application for the X-31A
program. Portions of data from an X-31A flight are pre-
sented and analyzed using the XAIDS to demonstrate
the tool’s capabilities and effectiveness.

XAIDS Messages Design
The XAIDS messages application is a software pack-

age which consists of four parts: the knowledge base,
parser, database, and message display window. Figure 2
shows these four parts with the bold borders. The data-
base and knowledge-base source files are created for a
specific application which is processed by a generic
parser. The parser expands the knowledge base into a
stand-alone source code which is compiled to form an
executable file. This file interfaces with the real-time
data input stream and updates the XAIDS messages dis-
play at the input data rate. A detailed description of these
elements of the system follows.

Knowledge Base

The knowledge base contains the rules which trigger
the messages for the message display. Figure 3 shows its
general structure. For the application presented in this
report the knowledge base consisted of three parts: pre-
processing, parameter typing, and rules computation and
message generation.

In the preprocessing section the various tests per-
formed before further processing include the following:

1. Verify that the incoming data are live. The live data
test requires that the flight control computer (FCC)

® UNIX is a registered trademark of AT&T Bell Laboratories,
Whippany, New Jersey.

frame counter be incremented each time the rules
file is called. If the counter is constant, a message
will be set to indicate a stale data condition and the
routine is immediately exited.

2. Test for telemetry (TM) dropouts. The TM data are
tested by checking ground station status words to
ensure a good signal lock. Data words are tested
also to ensure no bits are set in positions that should
always be zero. Finally, selected data words are rate
checked and compared against a reasonable rate
limit threshold. If any of these conditions occur, the
messages are not updated.

3. Compute the rule update rate. Determine the differ-
ence in the FCC minor frame counter and convert
to samples/sec.

4. Determine which FCC channel (1 or 2) is trans-
mitting the data and display that information in a
message.

The parameter typing portion of the knowledge file
converts desired signals from integer to floating point or
vice versa. Scale factors are applied for any raw, fixed
point signals to convert to engineering units (EUs). Inte-
gers are created from bit masking operations to unpack
discrete words for later use in the rule computations.

Arithmetic and Boolean expressions are defined in the
rules-computation and message-generation section.
Messages are triggered in this section. The rules are
written so that they all update with each pass through the
knowledge file. Typical C functions are allowed by the
parser in these expressions. In addition, customized
functions are called in this section.

Parser

The parser is a program written in C language which
expands the grammar and structure of the knowledge-
base file into additional C code for compilation into
an executable module. It reduces the workload of the
knowledge-base developer by performing the following
tasks:

1. Eliminates explicit data typing

2. Coordinates message ID tags and message on/off
logic by appending C code to rules expressions for
the “else” path to reset messages

3. Validates references to the data stream

4. Creates logic to permit data to be input from the
spreadsheet for testing or from real-time data inter-
faces

Database

A database file contains a symbolic reference of the
data words set containing the format type. The database
2

is used with the knowledge-base file to tell the parser
how to interpret external data (integer or floating point).
The integer type also includes packed discrete words.
Scale factors are included for the raw words for conver-
sion to EUs if the scaled words are not available from
the database.

Message Display Window

The XAIDS messages are output to a display window
in a stack format. Figure 4 shows an example. As new
messages are added at the top of the stack, old messages
are pushed down. The mouse is used to scroll through
the messages should it exceed the window size. All mes-
sages are automatically appended with the time of day
as they are added to the stack to provide a log of the
events. Colored messages help distinguish categories of
events. Rescinded messages change to white for 5 sec
before removal from the stack. The older messages be-
low are then pushed up to fill the gap in the stack.

The data display stack contains two types of messages.
One type is a textual character string that provides inter-
preted information. This message is typically triggered
by single or multiple logical flags. The multiple-flag
version is used for common messages applied to differ-
ent channels such as quad I/O discretes to eliminate du-
plication. A single message that contains the embedded
channel numbers signifies which channels are triggering
the message.

The second type of message is used to output data
values that continue to be updated. This type is generally
used in combination with a textual message which has
been triggered to provide additional information. A typi-
cal application of this message type is to send a data val-
ue to the message stack whenever a particular limit is
exceeded. When that signal is less than the limit, the
message is removed from the stack.

An important feature of the XAIDS messages window
is the option to write a message log file to a disk for later
printing. Other menu options are available to (1) freeze
the display, (2) prevent the removal of old messages so
they can be examined more thoroughly, and (3) print the
current message stack.

Knowledge-Base Generation and Testing

The knowledge-base development process consists of
four steps as shown in figure 5. These steps are (1) create
a real-time database, (2) develop rules logic, (3) test the
rules, and (4) install rules with the real-time interfaces.

The database file defines the symbol names and data
types for the parser. Any real-time data that can be mon-
itored by the XAIDS can be added to the database file.

The rules logic are developed from documentation,
inspection of flight code, system experts, and from sys-
tem ground and flight testing experience. The logic that
triggers the messages was developed by answering the
question, “If event x happens, what information do I
want to see?” Figure 6 illustrates this logic. A large
amount of data is processed, but only limited informa-
tion needs to be displayed at a given time depending on
the display decision criteria.

The rules are verified statically from a spreadsheet as
shown in figure 7. This option is selected by clicking the
mouse first on the “rules” and then on the “test” boxes.
The spreadsheet is automatically loaded with all the pa-
rameters used in the rules file. The values for any param-
eter may be set from the spreadsheet to verify the rules
logic. As rules are satisfied, messages appear in the
XAIDS messages window.

Finally, the executable XAIDS file is installed on the
MCC real-time processors. Dynamic testing is done by
playing back a data file through the XAIDS. The messag-
es are compared with known events at specific times on
the file. The update rate of the rules can be determined,
and the logic to reject data from TM dropouts is tested.

Rules Development Experience

The development of the rules for an MCC application
of a program like the X-31A involved a moderate effort.
The construction of rules from packed discrete words
and flight limit parameters was very mechanical. Since
the knowledge-base developer was not previously famil-
iar with the X-31A FCS, however, considerable time was
spent learning the system before translation into rules
could be done. An inspection of the flight code and FCC
data was necessary to learn how the system worked. The
multiple-term expressions and nesting of rules such as
the actuator redundancy management (RM) logic was
more difficult to construct. A custom routine was written
to process a table of 430 fail codes from the X-31A data
words into a character string. Another 200 messages
were added to the knowledge base to monitor the system
health, status, flight limits, and pilot advisories. Testing
of the rules logic using the spreadsheet was very easy
and took less than one day to complete.

Results and Discussion

The test data presented in this section was obtained
from a TM tape playback from an X-31A flight. A mes-
sage file was generated from that playback, and portions
of that data are presented from the preflight built-in test
(BIT) and events that occurred during flight.

The X-31A preflight BIT program includes an actua-
tor RM test. To understand the actuator command logic
3

for the trailing edge flap logic, refer to figure 8. Basical-
ly, isolation valve (ISV) discretes from FCCs 1 and 2
drive actuator 1, and FCC 3 drives actuator 2. If either
FCC 3 or hydraulic system A fails, a command path
from FCC 2 is opened to actuator 2 to provide redundan-
cy. These paths are all tested for each surface during the
actuator portion of preflight BIT. Table 1 shows the
results of the preflight BIT for the left trailing edge
outboard flap.

The messages indicate which ISV discretes are failed
during preflight BIT and whether the actuator or surface
is still functioning. The dash (–) preceding the time indi-
cates that the message has been rescinded. This log pro-
vides the engineer better insight and visibility into what
preflight BIT is doing and ensures confidence that the
actuator RM is working as designed.

To verify if some tests are missing or not working
properly is easy. The rules are designed as follows. If
both paths to a given actuator are failed, a message for a
single link fail is replaced with a message indicating that

the actuator has failed. If both actuators have totally
failed for a given surface, the actuator failed messages
are replaced with a single surface fail message. Should
any of these paths fail during flight, the appropriate
message will immediately be triggered.

Table 2 shows a portion of the XAIDS messages log
file from the flight. This segment of the log file contains
a record of surface and flight limits that were exceeded.
From 14:03:54 to 14:31:05, FCS limits were exceeded
four times: (1) NZ @ 14:03:54, (2) VANE #1 @
14:23:21, (3) AOA @ 14:31:01, and (4) VANE #1 @
14:31:05. Messages were triggered showing what limit
was exceeded along with the current value of that pa-
rameter. Other information contained in the log file indi-
cates that the pilot requested the spin mode at 14:15:22.
This mode was not engaged, however, because the air-
speed was greater than 200 knots or the airdata was not
failed. At 14:27:34 a continuous ignition command to
the engine controller from FCC channel 2 was generated
because the angle of attack (AOA) exceeded 30 deg.
4

Table 1. Excerpt from preflight BIT message log file.

XAIDS Message Log File:

– = Message off

11:00:57:252 LTEFO ACT #2 IS FAILED

11:00:57:402 TOTAL LTEFO SURFACE FAIL; ALL ISV’S ARE DEENERGIZED

11:00:58:102 LTEFO ACT #1 FROM C2 DEENERGIZED; C1 STILL FUNCTIONAL

11:00:58:352 LTEFO ACT #2 FROM C3 DEENERGIZED; C2 STILL FUNCTIONAL

11:00:58:352 LTEFO ACT #2 FROM C2 IS ENERGIZED DUE TO FAILURE OF C3

11:00:58:552 LTEFO ACT #1 IS FAILED

11:00:58:902 LTEFO ACT #1 FROM C1 DEENERGIZED; C2 STILL FUNCTIONAL

–11:01:03:152 TOTAL LTEFO SURFACE FAIL; ALL ISV’S ARE DEENERGIZED

–11:01:03:752 LTEFO ACT #1 FROM C2 DEENERGIZED; C1 STILL FUNCTIONAL

–11:01:04:202 LTEFO ACT #2 FROM C3 DEENERGIZED; C2 STILL FUNCTIONAL

–11:01:04:202 LTEFO ACT #2 FROM C2 IS ENERGIZED DUE TO FAILURE OF C3

–11:01:04:602 LTEFO ACT #2 IS FAILED

–11:01:04:812 LTEFO ACT #1 FROM C1 DEENERGIZED; C2 STILL FUNCTIONAL

–11:01:05:312 LTEFO ACT #1 IS FAILED

Table 2. Excerpt from flight message log file.

XAIDS Message Log File:
– = Message off

14:03:54:227 * NZ = 1.7
14:03:54:227 WARNING - NZ LIMIT EXCEEDED IN R3 MODE; > 1.5G

–14:04:02:767 WARNING - NZ LIMIT EXCEEDED IN R3 MODE; > 1.5G
–14:04:02:767 * NZ = 1.7
14:15:22:431 * AIRDATA HAS NOT FAILED
14:15:22:431 * VTAS = 385.6 KNOTS
14:15:22:431 * VTAS > 200 KNOTS
14:15:22:431 SPIN RECOVERY MODE REQUESTED, BUT NOT ENGAGED BECAUSE
14:15:22:431 C1 :SPIN RECOVERY SELECT
14:23:21:683 * VANE #1 CMD = 26.4
14:23:21:683 *** CAUTION *** VANE #1 CMD >= 26 DEG

–14:23:30:133 *** CAUTION *** VANE #1 CMD >= 26 DEG
–14:23:30:133 * VANE #1 CMD = 27.7
14:27:34:965 * AOA > 30 = 30.4
14:27:34:965 C 2 :CONTINUOUS IGNITION BECAUSE

–14:28:08:475 C 2 :CONTINUOUS IGNITION BECAUSE
–14:28:08:475 * AOA > 30 = 30.0
14:31:01:636 * AOA > 30 = 30.5
14:31:01:636 WARNING - AOA LIMIT EXCEEDED IN BASIC MODE OF 30 DEG
14:31:05:286 * VANE #1 CMD = 28.3
14:31:05:186 *** CAUTION *** VANE #1 CMD >= 26 DEG

–14:31:09:636 WARNING - AOA LIMIT EXCEEDED IN BASIC MODE OF 30 DEG
–14:31:09:636 * AOA > 30 = 30.1
–14:31:10:846 *** CAUTION *** VANE #1 CMD >= 26 DEG
–14:31:10:846 * VANE #1 CMD = 28.3
Concluding Remarks

An in-house development of a rule-based, real-time
analysis application program for use on a UNIX-based
operating system was developed and demonstrated at the
NASA Dryden Flight Research Facility. The motivation
for this effort was to improve the safety-of-flight systems
monitoring and to reduce the amount of postflight data
processing required for both flight and ground testing.

A preliminary evaluation of this concept has proven
encouraging. Much of the pressure on control room per-
sonnel for routine safety-of-flight monitoring probably
will be reduced. The XAIDS detected that several flight
limits were exceeded from the flight portion presented.
The time tagging of the messages has proven usable in
providing an automated time log of events during the
flight which is printed postflight. This log helps in deter-
mining times for postflight analysis. It would be prema-
ture to expect to reduce the number of control room
personnel, but certainly the types of parameters that are

monitored can be modified which more appropriately
require human interpretations.

References
1 Muratore, John F., Troy A. Heindel, Terri B. Murphy,
Arthur N. Rasmussen, and Robert Z. McFarland, “Ac-
quisition at Mission Control,” Communication of the
ACM, vol. 33, no. 12, Dec. 1990.

2 Malin, Jane T., Debra L. Schreckenghost, David D.
Woods, Scott S. Potter, Leila Gohannesen, Matthew Hol-
loway, and Kenneth D. Forbus, Making Intelligent Sys-
tems Team Players: Case Studies and Design Issues,
Volumes 1 and 2, NASA TM-104738, 1991.

3 Glover, Richard D. and Richard R. Larson, A Knowl-
edge Based Application of the Extended Aircraft Interro-
gation and Display System, NASA TM-4327, 1991.

4 Mackall, Dale, Ken Norlin, Dorothea Cohen, and Gary
Kellogg, “Rapid Development of the X-31 Simulation to
Support Flight Testing,” AIAA Paper 92-4176, 1992.
5

Fig. 1 MCC support using XAIDS application.

--- --- ---
--- --- ---
--- --- ---
--- --- ---
--- --- ---

-- -------
 -- -------
-- -------

+
Standard

 data display
 pages

1. FCS block diagrams
2. Flight manual
3. FCS description
4. Flight limits

Traditional
MCC

monitoring

Flight support requires
interpretation by senior-level

experts for each system

Replaced by

XAIDS
message
display

msg stack

Flight support with
junior-level engineer

with greater efficiency

920557

X-31A aircraft
documents
6

Fig. 2 XAIDS message application design.

Fig. 3 Knowledge-base execution sequence.

920558

Real-time
data

Executable
knowledge file

Message
display window

Knowledge base

Database

Application
specific

Application
specific

Parser

Generic

Compiler

Preprocessing
• Test for live data
• Test for TM dropouts
• Compute update rate
• Identify transmitting channel

Parameter typing
• Convert to floating
• Scaling to EU if required
• Bit masking and unpacking

Rules computation and
message generation
• Rules definition
• Nested rules
• Calls to special functions
• Call to fail code routine
• Single logic messages
• Multiple logic messages
• Numerical outputs

920559
7

Fig. 4 XAIDS message display window.

920617

12:49:05.000 POST STALL IS REQUESTED, BUT NOT ENGAGED BECAUSE
12:49:05.000 * PITCH STICK CMD <= 1.0 = 0.0
12:49:05.000 * LANDING GEAR IS NOT UP
12:49:05.000 * NOT IN BASIC MODE
12:49:05.000 * COMPRESSOR ROTOR SPEED INVALID
12:49:05.000 * EST LOAD FACTOR @ 30 AOA > 7.2 = 7.4
12:49:05.000 * MACH > 0.7 = 0.71
12:49:05.000 * COMPRESSOR ROTOR SPEED < 84 PERCENT = 0.0
12:49:05.000 * PRESSURE ALT < 10K FEET = 0
12:49:05.000 * THRUST VECTORING VANES ARE DISENGAGED
12:49:05.000 POST STALL ENABLE
12:48:57.000 LANDING GEAR DOWN
12:48:14.000 TV VANES NOT TO BE USED
12:48:14.000 ENGINE CORE SPEED FAILED

XaidsMessagesX

Log Print Pause
8

Fig. 5 Knowledge-base development process.

920560

Create database
1. Parameter table
2. Define data types
3. Scale factors
4. Source

Develop rules
1. Documentation
2. Testing
3. OFP code
4. From system experts
5. User requirements
6. Raw a/c data

Test rules
Static (spreadsheet)

Install rules
1. Interface with TM
2. Verify interface
3. Evaluate performance
4. Modify as required
9

Fig. 6 Real-time loop for rules update.

 Read data

F

T

Update rule i
messages (s)

Real-time
loop

F

T

Rescind rule i
message (s)

i = i + 1

920616

Last
rule

Rule i

Rules
loop
10

11

Fig. 7. Rules verification testing.

12

LVDT

LVDT

LVDT

LVDT

ctuator 1

ctuator 2

Control
surface

Electrical
 wiring
Discrete
 signals
Hydraulic
 system A
Hydraulic
 system B

920561

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�

�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�

�
�
�

�

�
�
�

�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�

�
�

�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�

�
�
�

�

+ +
– –

+ +
– –

+ +
– – Control

module

LVDT

Control
software

FCC 1

FCC 2

FCC 3

LVDT

EHSV

ISV

Bypass
valve

LVDT

EHSV

ISV

Bypass
valve

LVDT

EHSV

ISV

Bypass
valve

LVDT

LVDT

Main
control
valve

A

A

To tie-breaker

Control
software

Control
software

Fig. 8. Trailing edge flap actuation.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

6. AUTHOR(S)

8. PERFORMING ORGANIZATION
REPORT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

.

A Rule-Based System for Real-Time Analysis of Control Systems

WU 505-64-30

Richard R. Larson and D. Edward Millard

NASA Dryden Flight Research Facility
P.O. Box 273
Edwards, California 93523-0273

H-1859

National Aeronautics and Space Administration
Washington, DC 20546-0001 NASA TM-104258

An approach to automate the real-time analysis of flight critical health monitoring and system status is being
developed and evaluated at the National Aeronautics and Space Administration Dryden Flight Research
Facility. A software package was developed in house and installed as part of the extended aircraft
interrogation and display system. This design features a knowledge-base structure in the form of rules to
formulate interpretation and decision logic of real-time data. This technique has been applied for ground
verification and validation testing and flight test monitoring where quick, real-time, safety-of-flight decisions
can be very critical. In many cases postprocessing and manual analysis of flight system data are not required.
This paper describes the processing of real-time data for analysis and the output format, which features a
message stack display. The development, construction, and testing of the rule-driven knowledge base, along
with an application using the X-31A flight test program, are presented.

Control systems; Mission control center; Real-time analysis
A03

16

Unclassified Unclassified Unclassified Unlimited

October 1992 NASA Technical Memorandum

Prepared for the IEEE/AIAA 11th Digital Avionics Systems Conference, Seattle, Washington,
October 5–8, 1992.

Unclassified—Unlimited
Subject Category 31

	Cover Page
	Title Page
	Abstract
	Nomenclature
	Introduction
	XAIDS Messages Design
	Knowledge Base
	Parser
	Database
	Message Display Window

	Knowledge-Base Generation and Testing
	Rules Development Experience
	Results and Discussion
	Concluding Remarks
	References
	Figures
	Report Documentation Page

